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Abstract. We confront our quasi-particle model for the equation of state of strongly interacting matter with
recent first-principle QCD calculations. In particular, we test its applicability at finite baryon densities by
comparing with Taylor expansion coefficients of the pressure for two quark flavours. We outline a chain
of approximations starting from the Φ-functional approach to QCD which motivates the quasi-particle
picture.

1 Introduction

In the last years, great progress has been made in the
numerical evaluation of QCD thermodynamics from first
principles (dubbed lattice QCD) even for finite chem-
ical potentials [1–7]. While various perturbative expan-
sions [8–13] fail in describing the thermodynamics of
strongly interacting matter in the vicinity of Tc (the
(pseudo-) critical temperature of deconfinement and chi-
ral symmetry restauration), different phenomenological
approaches exist which aim to reproduce the non-perturb-
ative behaviour. For instance, models based on quasi-
particle pictures with effectively modified properties due
to strong interactions are successful in describing lattice
QCD results [14–23]. Analytical approaches with a rig-
orous link to QCD (cf. [24] for a survey) such as dir-
ect HTL resummation [25–28] or the Φ-functional ap-
proach [29–34] formulated in terms of dressed propagators
are successful in describing lattice QCD on temperatures
T � 2Tc.
It is the aim of the present paper to show the suc-

cessful applicability of our quasi-particle model (QPM)
for describing lattice QCD results and to motivate the
model starting from the Φ-functional approach to QCD.
In Sect. 2, we review the QPM and compare with recent
lattice QCD results for pressure and entropy density. In
Sect. 3, a possible chain of approximations is outlined
starting from QCD within the Φ-functional approximation
scheme which motivates our formulation of QCD ther-
modynamics in terms of quasi-particle excitations. We
summarize our results in Sect. 4.
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2 QPM and comparison with lattice QCD

In our model, the pressure p forNf = 2 light quark flavours
in thermal equilibrium as a function of temperature T and
one chemical potential µq (µg = 0) reads

p(T, µq) =
∑

a=q,g

pa−B(T, µq) , (1)

where pa = da/(6π
2)
∫∞
0
dkk4 (f+a +f

−
a ) /ωa denote the

partial pressures of quarks (q) and transverse gluons
(g). Here, dq = 2NfNc, dg = N

2
c − 1, Nc = 3, and f

±
a =

(exp([ωa∓µa]/T )+Sa)−1 with Sq = 1 for fermions and
Sg = −1 for bosons. B(T, µq) is determined from ther-
modynamic self-consistency and the stationarity of p
under functional variation with respect to the self-energies,
δp/δΠa = 0 [35]. The Πa enter the quasi-particle disper-
sion relations, ωa being approximated by asymptotic mass
shell expressions near the light cone, ωa =

√
k2+Πa. We

employ the asymptotic expressions of the gauge indepen-
dent hard thermal (dense) loop self-energies [36]. Finite
bare quark masses m0;q as used in lattice simulations can
be implemented following [37, 38].
By replacing the running coupling g2 in Πa with an ef-

fective coupling G2(T, µq), non-perturbative effects in the
vicinity of Tc are accomodated. In this way, we achieve
enough flexibility to describe lattice QCD results. We
parametrizeG2(T, µq = 0) [39] by

G2(T, µq = 0) =

⎧
⎨

⎩

G2(2)(ξ(T )), T ≥ Tc,

G2(2)(ξ(Tc))+ b
(
1− T

Tc

)
, T < Tc,

(2)

where G2(2) is the relevant part of the two-loop running
coupling and ξ(T ) = λ(T −Ts)/Tc contains a scale param-
eter λ and an infrared regulator Ts. The effective coup-
ling G2 for arbitrary T and µq can be found by solving
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a quasi-linear partial differential equation which follows
from Maxwell’s relation,

aµq
∂G2

∂µq
+aT

∂G2

∂T
= b . (3)

The coefficients in (3) explicitly read (neglecting for sim-
plicity additional contributions stemming from the T -
dependent bare quark masses as employed in lattice simu-
lations)

aT = I1
Cf

4

(
T 2+

µ2q

π2

)
, (4)

aµq =−I2
Cf

4

(
T 2+

µ2q

π2

)
(5)

− I3

([
Nc+

Nf

2

]
T 2

6
+
NcNf

12π2
µ2q

)
,

b=−I1
Cf

2
TG2+ I2

Cf

2

µq

π2
G2 (6)

+ I3
NcNf

6π2
µqG

2 .

Here,

I1 =
dq

4π2T

∫ ∞

0

dk
k2

ωq

(
eω
+
q /T (f−q )

2− eω
−
q /T (f+q )

2

)
,

(7)

I2 =
dq

2π2T

∫ ∞

0

dk
k2

ωq

(
f+q −

Lqf
+
q

ωq

[
1

ωq
+
eω
−
q /T

T
f+q

]

(8)

+
µq

2T
eω
−
q /T (f+q )

2+f−q −
Lqf

−
q

ωq

[
1

ωq
+
eω
+
q /T

T
f−q

]

−
µq

2T
eω
+
q /T (f−q )

2

)
,

I3 =
dg

π2T

∫ ∞

0

dk
k2

ωg
fg

(
1−
Lg

ωg

[
1

ωg
+
eωg/T

T
fg

])
, (9)

with f±g ≡ fg, ω
±
q = ωq±µq, La = 2k

2/3+Πa/2 and Cf =
(N2c −1)/2Nc.
The entropy density s = ∂p/∂T =

∑
a=q,g sa and the

net density n= nq = ∂p/∂µq follow from (1) as follows:

sa =
da

2π2T

∫ ∞

0

dkk2
( 4
3k
2+Πa

ωa

[
f+a +f

−
a

]
(10)

−µa
[
f+a −f

−
a

])
,

nq =
dq

2π2

∫ ∞

0

dkk2
[
f+q −f

−
q

]
. (11)

In Fig. 1, we exhibit QPM results for p and s at µq = 0
compared with lattice QCD results for different numbers of
quark flavours [40, 41].
Recently, the decomposition of p into a Taylor series

in powers of µq/T for small µq was studied in lattice

Fig. 1. Comparison of our QPM with lattice QCD results
(symbols) for p(T, µq = 0)/T

4 (upper panel) and s(T, µq = 0)/

T 3 (lower panel) as functions of T/Tc for Nf = 2 (squares) [40]
andNf =2+1 (µs = 0) (circles) [40, 41]. Raw lattice QCD data
are continuum extrapolated as advocated in [40, 42]. QPM pa-
rameters: λ= 4.4, Ts = 0.67Tc, b= 344.4, B(Tc) = 0.31T

4
c with

Tc = 175MeV for Nf = 2 and λ = 7.6, Ts = 0.80Tc, b = 348.7,

B(Tc) = 0.52T
4
c with Tc = 170MeV for Nf = 2+1

QCD [43, 44],

p(T, µq) = T
4
∞∑

n=0

cn(T )
(µq
T

)n
. (12)

The expansion coefficients cn(T ), vanishing for odd n and
depending only on the temperature T , follow using (1)
from

cn(T ) =
1

n!

∂n(p/T 4)

∂(µq/T )n

∣∣∣∣
µq=0

. (13)

cn(T ) depend on G
2 and its derivatives with respect to

µq at µq = 0, thus testing (3). Furthermore, the net dens-
ity n can also be decomposed into a Taylor series at small
µq with expansion coefficients cn(T ). Therefore, the higher
order coefficients c2,4,6(T ) serve for a more direct test of the
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Fig. 2. Comparison of our QPM with lattice QCD results
(symbols) [43, 44] for c2,4(T ) (upper panel) and c6(T ) (lower
panel) as functions of T/Tc for Nf = 2. QPM parameters: λ=
12.0, Ts = 0.87Tc, b= 426.1, with Tc = 175MeV. The horizontal
lines at T ≥ Tc depict the corresponding Stefan–Boltzmann
values highlighting the effects of the strong interaction near Tc

applicability of our model at finite µq. In Fig. 2, we com-
pare c2,4,6(T ) evaluated from (13) with lattice QCD results
for Nf = 2 [43, 44]. In particular, the pronounced struc-
tures in the vicinity of Tc are fairly well reproduced [39].

3 Foundations of the QPM

Having successfully reproduced first-principle lattice QCD
results, it would be desirable to establish contact between
our ad hoc introduced QPM in Sect. 2 and QCD as the
fundamental microscopic gauge field theory of strong inter-
actions. In order to motivate our quasi-particle model, we
present a possible chain of approximations starting from
QCD within the Φ-functional approach following the pi-
oneering work of [29–34]. We concentrate on the entropy
density s and the net density n, as these turn out to pos-
sess a simple structure supporting the picture of quasi-
particle excitations. Other thermodynamic quantities such
as the pressure p or the energy density e are determined

from s and n. Although rather strong assumptions become
mandatory in the derivation, one should be aware of the
remarkable success of our QPM in describing lattice QCD
results.
In the Φ-functional approach [45, 46] to QCD, the ther-

modynamic potential Ω = −T lnZ can be expressed as
a functional of dressed propagators of gluons,D, quarks, S
and Faddeev–Popov ghost fields, G,

Ω[D,S,G]

T
=
1

2
Tr[lnD−1−ΠD]−Tr[lnS−1−ΣS]

−Tr[lnG−1−ΞG]+Φ[D,S,G] . (14)

Here, ghost field contributions compensate for possible un-
physical degrees of freedom in the gluon propagator.While
the propagators in (14) depend on the specific gauge, Ω =
−pV must be gauge independent. For convenience, we
choose the Coulomb gauge in the following, in which ghost
fields do not propagate and the gluon propagator consists
only of the physical transverse and longitudinal modes.
The functional Φ[D,S] is given by the infinite sum of
all two-particle irreducible skeleton diagrams constructed
fromD and S.
The self-energies are related to the dressed propagators

by Dyson’s equations:

Π[D] =D−1−D−10 , Σ[S] = S
−1−S−10 , (15)

where D0 and S0 represent the bare propagators of gluon
and quark fields, respectively. Demanding the stationarity
of Ω under functional variation with respect to the dressed
propagators [47]

δΩ[D,S]

δD

∣∣∣∣
D0

=
δΩ[D,S]

δS

∣∣∣∣
S0

= 0 , (16)

the self-energies follow self-consistently by cutting a dress-
ed propagator line in Φ resulting in the gap equations

Π = 2
δΦ[D,S]

δD
, Σ =−

δΦ[D,S]

δS
. (17)

The trace “Tr” in (14) has to be taken over all states
of the relativistic many-particle system. In the imag-
inary time formalism it can be rewritten in the form
Tr→ tr βV T

∑+∞
n=−∞

∫
d3k/(2π)3. Here, V is the volume

of the system, β = 1/T and “tr” denotes the remaining
trace over the occurring discrete indices including colour,
flavour, Lorentz or spinor indices. Introducing the four-
momentum kν = (ω, k) = (iωn, k), the sums have to be
taken over the Matsubara frequencies ωn = 2nπT (or (2n+
1)πT − iµ) for gluons (or quarks). They can be evaluated
by using standard contour integration techniques in the
complex ω-plane [36, 48] wrapping up the poles of the prop-
agators. Expressing the analytic propagators in terms of
their spectral densities ρ, one can define

ρD(S)(ω, |k|) = 2 lim
ε→0
ImD(S)(ω+iε, |k|) (18)

for real ω. Similarly, the imaginary parts of functions of the
analytic propagators obeying the same pole structures can
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be defined. Hence, Ω reads with retarded propagators D
and S depending on ω and k = |k|

Ω[D,S]

V
= tr

∫
d4k

(2π)4
n(ω) Im[lnD−1−ΠD] (19)

+2tr

∫
d4k

(2π)4
f(ω) Im[lnS−1−Σ S]

+
T

V
Φ[D,S] ,

where
∫
d4k =

∫
d3k
∫
dω, and n(ω) = (eβω−1)−1 (f(ω) =

(eβ(ω−µ)+1)−1) denotes the statistical distribution func-
tion for gluons (quarks with chemical potential µ).
Due to the stationarity property (16), the entropy dens-

ity s=−∂(Ω/V )/∂T and the net density n=−∂(Ω/V )/∂µ
contain only explicit temperature and chemical potential
derivatives of n(ω) and f(ω), although the propagators in
(19) depend implicitly on T and µ through their spectral
densities. Using Im (ΠD) = ImΠ ReD+ReΠ ImD, one
finds for the entropy density s= sg+ sq+ s

′, with

sg =−tr

∫
d4k

(2π)4
∂n(ω)

∂T
[Im lnD−1− ImΠ ReD] , (20)

sq =−2tr

∫
d4k

(2π)4
∂f(ω)

∂T
[Im lnS−1− ImΣReS] , (21)

s′ =−
∂
(
T
V
Φ[D,S]

)

∂T

∣∣∣∣∣
D,S

+2tr

∫
d4k

(2π)4
∂f(ω)

∂T
ReΣ ImS

+tr

∫
d4k

(2π)4
∂n(ω)

∂T
ReΠ ImD . (22)

Similarly, for the net density one finds n= nq+n
′, with

nq =−2tr

∫
d4k

(2π)4
∂f(ω)

∂µ
[Im lnS−1− ImΣ ReS], (23)

n′ = 2tr

∫
d4k

(2π)4
∂f(ω)

∂µ
ReΣ ImS−

∂
(
T
V
Φ[D,S]

)

∂µ

∣∣∣∣∣
D,S

.

(24)

While the sum integrals in Ω (19) contain ultraviolet di-
vergencies which must be regularized, the expressions for
sg, sq and nq in (20), (21) and (23) are manifestly ultravi-
olet convergent, because the derivatives of the statistical
distribution functions vanish for ω→±∞. In addition, in-
troducing real multiplicative renormalization factors for
propagators and self-energies, these factors simply drop
out of s and n.
Self-consistent (or Φ-derivable) approximation schemes

preserve the stationarity property (16) of Ω when trun-
cating the infinite sum in Φ at a specific loop order,
while corresponding self-energies and propagators are self-
consistently evaluated from (17) and Dyson’s equations.
Nevertheless, self-consistency does not guarantee gauge
invariance which is an important issue in truncated ex-
pansion schemes. In fact, by modifying propagators but

leaving vertices unaffected, the Ward identities are vio-
lated.
We consider Φ at two-loop order in the following, which

is diagrammatically represented by [49, 50]

(25)

Here, wiggly (solid) lines denote gluons (quarks). The self-
consistent self-energies are accordingly

(26)

(27)

Although vertex corrections can be implemented self-
consistently [51], they turn out to be negligible at two-loop
order in Φ [33]. In addition, s′ = n′ = 0 is found for the
residual contributions of entropy density and net density
in (22) and (24) at two-loop order [33]. This topological
feature, being related to (17), has also been observed in
massless Φ4-theory [49, 50, 52] and in QED [53, 54].
Concentrating on the gluonic contribution sg, (20) can

be rewritten by using the identity

Im[lnD−1(ω, k)] =−π sgn(ω)Θ(−ReD−1(ω, k))

(28)

+ arctan

(
ImΠ(ω, k)

ReD−1(ω, k)

)

where −π/2 < arctanx < π/2. Hence, sg can be decom-
posed into sg = sg,QP+ sg,LD, with

sg,QP = tr

∫
d3k

(2π)3

∫
dω

2

∂n(ω)

∂T
sgn(ω)Θ(−ReD−1) ,

(29)

sg,LD = tr

∫
d4k

(2π)4
∂n(ω)

∂T

×

{
ImΠ ReD−arctan

(
ImΠ

ReD−1

)}
. (30)

Here, (29) accounts for the contribution of the dynamical
quasi-particles to sg defined by the poles of D, and (30)
represents the contribution from the continuum part of the
spectral density associated with a cut below the light cone
|ω|< k [37, 38, 55, 56] representing Landau damping. Ap-
plying a similar identity for Im[lnS−1(ω, k)], sq and nq
in (21) and (23) can be decomposed similarly into quasi-
particle and Landau damping contributions.
In Coulomb gauge, D consists of a longitudinal and

a transverse part, DL and DT. Similarly, the (massless)
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quark propagator consists of two different branches with
chirality either equal (positive energy states) or opposite
(negative energy states) to the helicity. By employing the
gauge invariant hard thermal loop (HTL) expressions Π̂
(Σ̂) for the gluon (quark) self-energies in the following, one
obtains gauge invariant approximations of s and n. The
HTL expressions read [36]

Π̂L(ω, k) = m̂
2
D

(
1−
ω

2k
ln
ω+k

ω−k

)
, (31)

Π̂T(ω, k) =
1

2

(
m̂2D+

ω2−k2

k2
Π̂L(ω, k)

)
, (32)

Σ̂±(ω, k) =
M̂2

k

(
1−
ω∓k

2k
ln
ω+k

ω−k

)
, (33)

with Debye screening mass (allowing, in general, for differ-
ent chemical potentials µi)

m̂2D =

(
[2Nc+Nf ]T

2+Nc
∑

i

µ2i
π2

)
g2

6
, (34)

long-wavelength fermionic frequency

M̂2 =
N2c −1

16Nc

(
T 2+

µ2i
π2

)
g2 , (35)

and running coupling g2. Although being derived originally
for soft external momenta ω, k ∼ gT � T , they coincide on
the light cone with complete one-loop results [57] as exhib-
ited in Fig. 3. Finite quark masses, m< T , turn out to be
negligible. The corresponding propagators are evaluated
from Dyson’s equations.
For k ∼ T, µ the poles of both, longitudinal gluon prop-

agator as well as abnormal fermion branch have exponen-
tially vanishing residues [37, 38] giving only minor con-
tributions to the thermodynamics. Therefore, we assume
that these collective modes can be neglected in the fol-
lowing. Furthermore, being a severe approximation, we
also neglect any imaginary parts of the self-energies, i.e.
ImΠ̂T = ImΣ̂+ = 0. Then the Landau damping contribu-
tions to sg, sq and nq vanish. Finite width effects associ-
ated with imaginary parts of the self-energies are discussed
by Peshier [55, 56]. Including Landau damping as well as
the exponentially suppressed modes, it was shown in [17]
that in this way some ambiguities arising when solving (3)
can be eliminated.
Performing the ω-integration in (29) (but now for D̂T),

the only contributions stem from ω2 ≥ ω2T because of the
Θ-function, where ωT is the positive solution of ω

2−k2−
Π̂T(ω, k) = 0. Therefore, the ω-integral in (29) reads

∫ ∞

−∞

dω

2

∂n(ω)

∂T
sgn(ω)Θ

(
−ReD̂−1T

)
(36)

=

∫ ωT

∞

dω

2

(
∂n(−ω)

∂T
−
∂n(ω)

∂T

)
.

Fig. 3. Comparison of HTL approximation (the nearly indis-
tinguishable short and long dashed curves are for massless (32)
(cf. [57]) and massive quarks, mq = 0.4T , as used in lattice
calculations [40–44], respectively) with one-loop results (solid
curves for massive quarks) [58] of the scaled real part of the
transverse gluon self-energy as function of ω/T for k/T = 0.1,
0.5 and 1 from left to right. Nf = 2, µi = 0. In the vicinity
of the light cone ω = k (shaded regions), HTL results approx-
imate one-loop results fairly well even for k ∼ T , which is the
thermodynamically relevant part in momentum space but with
decreasing agreement for increasing k

The remaining integration is performed through an in-
tegration by parts using −∂n(ω)/∂T = ∂n(−ω)/∂T =
∂σ(ω)/∂ω for the spectral function σ(ω) =−n(ω) lnn(ω)+
(1+n(ω)) ln (1+n(ω)). Taking the trace over polarization
and colour degrees of freedom for the transverse gluon
modes, one finds

sg,QP = (37)

−2
(
N2c −1

) ∫ d3k

(2π)3

(
ln(1− e−βωT )−

βωT

eβωT −1

)
.

Similarly, sq,QP can be evaluated, where non-vanishing
contributions to the ω-integration stem from ω≥ ω+. Here,
ω+ is the solution of ω−k− Σ̂+(ω, k) = 0 for the positive
fermion branch. Using −∂f(ω)/∂T = ∂σ(ω)/∂ω for the
spectral function σ(ω) =−f(ω) ln f(ω)− (1−f(ω)) ln(1−
f(ω)), the ω-integral can be integrated by parts. Anti-
quarks are included by simply replacing µ→−µ in f(ω).
Taking the trace over remaining spin, colour and flavour
degrees of freedom, one finds

sq,QP = (38)

2NcNf

∫
d3k

(2π)3

(
ln(1+e−β(ω+−µ))+

β(ω+−µ)

eβ(ω+−µ)+1

)

+2NcNf

∫
d3k

(2π)3

(
ln(1+e−β(ω++µ))+

β(ω++µ)

eβ(ω++µ)+1

)
.

sg,QP and sq,QP in (37) and (38) represent the entropy
density contributions of non-interacting quasi-particles
with quantum numbers of transverse gluons (quarks) and
dispersion relation ωT (ω+).
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Correspondingly, nq,QP is evaluated using −∂f(ω)/∂µ
= ∂f(ω)/∂ω. Adding antiquarks by µ→−µ in f(ω) (note
that now ∂f(ω)/∂µ = ∂f(ω)/∂ω) and taking the trace,
nq,QP reads

nq,QP = 2NcNf

∫
d3k

(2π)3

(
1

eβ(ω+−µ)+1
−

1

eβ(ω++µ)+1

)
.

(39)

Finally, we approximate the quasi-particle dispersion re-
lations by the asymptotic mass shell expressions near
the light cone, thus neglecting any momentum or en-
ergy dependence of the self-energies. We employ ωT →
ωg =

√
k2+Πg and ω+ → ωq =

√
k2+Πq as in Sect. 2

with asymptotic masses Πg = m̂
2
D/2 and Πq = 2M̂

2, con-
sidering only one chemical potential µi = µq (

∑
i µ
2
i →

Nfµ
2
q). Integrating the logarithmic terms in (37) and

(38) by parts (note that (39) already obeys the desired
form), one exactly recovers the expressions (10) and (11)
of our QPM, where the replacement of g2 by G2 re-
mains as phenomenological procedure on top of the listed
“approximations”.

4 Conclusions

In summary, motivated by the successful reproduction of
available results of QCD thermodynamics, we attempted
to make a collection of necessary steps to establish the
link of our employed quasi-particle model to QCD. Quite
severe assumptions had to be made. Even with these,
resulting in the formal structure of our model, an ad-
ditional and crucial point is the parametrization of the
effective coupling. While allowing for an accurate two-
parameter fit of many different lattice QCD results, it
requires a foundation. In this respect, we refer to the
work in [59], where the authors argue that the pure quasi-
particle excitations, deduced from a preliminary study of
the poles of quark and gluon propagators [60], are too
heavy to saturate the pressure delivered from lattice calcu-
lations [41], i.e. signalling the necessity of including addi-
tional degrees of freedom. Further systematic studies of the
relevant degrees of freedom in the strongly coupled quark–
gluon medium near Tc are eagerly awaited to have some
guidance.
An additional issue is the chiral extrapolation. The

quark masses of 0.4T employed in the lattice simulations
here analyzed correspond to unphysically heavy pions with
mπ ∼ 770MeV. In the one-loop and HTL gluon self-energy
considered here, such a finite quark mass has a tiny (neg-
ligible) impact. A more rigorous treatment of finite quark
mass effects must be accomplished to arrive at a suitable
chiral extrapolation.
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